

MONASH BUSINESS SCHOOL

Forecasting prison numbers: a grouped time series approach

George Athanasopoulos

with Tom Steel & Don Weatherburn

Outline

1 Hierarchical and grouped time series

- **2** BLUF: Best Linear Unbiased Forecasts
- **3** Forecasting Australian prison population
 - 4 Other forecast reconciliation settings

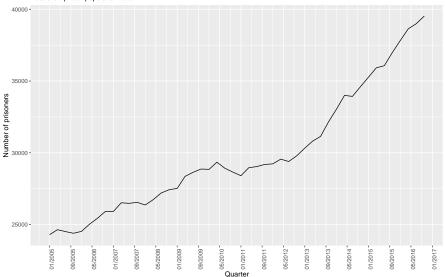
5 References

- Produce accurate but also detailed forecasts of prisoner numbers at the aggregate national level but also for multiple groupings based on attributes (and their interactions) that are of interest to a variety of policy makers and correctional administrators.
- The level of detail and the coherent nature of the forecasts enables informed and importantly aligned decision making across multiple departments and at all levels of management: strategic, tactical and operational.

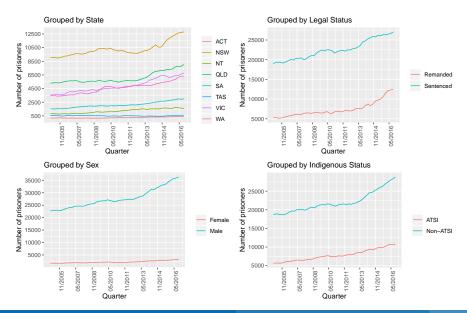
- Produce accurate but also detailed forecasts of prisoner numbers at the aggregate national level but also for multiple groupings based on attributes (and their interactions) that are of interest to a variety of policy makers and correctional administrators.
- The level of detail and the coherent nature of the forecasts enables informed and importantly aligned decision making across multiple departments and at all levels of management: strategic, tactical and operational.

Australian prison population

Australian prison population: total



Australian prison population

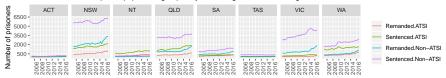


Forecasting aggregation structures

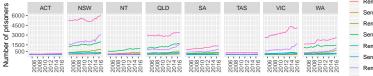
Hierarchical and grouped time series

Australian prison population

Australian adult prison population grouped by State, Legal Status and Indigenous Status



Australian adult prison population: bottom level series



Forecasting prison population

Demographics (243 series = 1 + 16 + 60 + 104 + 64):

- State (8)
- Sex (2)
- Legal Status (2)
- Indigenous Status (2)

ANZ Standard Offence Classification (243 series):

- Divisions (16) (Homicide, Sexual Assault, Robbery, Illicit drugs, etc.)
- Subdivisions (66) (Manslaughter and driving causing death, Murder, Attempted Murder, etc.)
- Groups (160) (Manslaughter, Driving causing death, etc)

Forecasting prison population

Demographics (243 series = 1 + 16 + 60 + 104 + 64):

- State (8)
- Sex (2)
- Legal Status (2)

Indigenous Status (2)

ANZ Standard Offence Classification (243 series):

- Divisions (16) (Homicide, Sexual Assault, Robbery, Illicit drugs, etc.)
- Subdivisions (66) (Manslaughter and driving causing death, Murder, Attempted Murder, etc.)
- Groups (160) (Manslaughter, Driving causing death, etc)

Forecasting prison population

Demographics (243 series = 1 + 16 + 60 + 104 + 64):

- State (8)
- Sex (2)
- Legal Status (2)

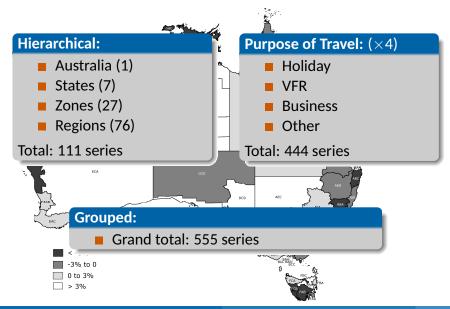
Indigenous Status (2)

➡ Grouped time series.

ANZ Standard Offence Classification (243 series):

- Divisions (16) (Homicide, Sexual Assault, Robbery, Illicit drugs, etc.)
- Subdivisions (66) (Manslaughter and driving causing death, Murder, Attempted Murder, etc.)
- Groups (160) (Manslaughter, Driving causing death, etc)

Australian domestic tourism



Forecasting student numbers

Total number of Monash Students

- Faculty (8)
- Campus (2 + Other)
- Funding source (3)
- Course level (3)
- Commencing/returning (2)
- Courses (457)
- Units (5605) (not sure we will get here).

Forecasting student numbers

Total number of Monash Students

- Faculty (8)
- Campus (2 + Other)
- Funding source (3)
- Course level (3)

Total: 152,289 time series.

- Commencing/returning (2)
- Courses (457)
- Units (5605) (not sure we will get here).

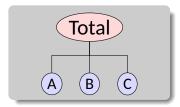
Forecasting student numbers

Challenges:

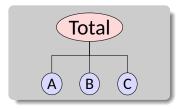
- ► Large number of series to forecast.
- We want a flexible forecasting process using all information available.
- ➡ We want forecasts to be coherent (add up).
 - Courses (457)
 - Units (5605) (not sure we will get here).

- Forecast all series at all levels of aggregation or groupings (in contrast to typical bottom-up, top-down or middle-out approaches).
- Reconcile the forecasts so they add up correctly using least squares optimization, i.e., find closest reconciled forecasts to the original forecasts.

- Forecast all series at all levels of aggregation or groupings (in contrast to typical bottom-up, top-down or middle-out approaches).
- Reconcile the forecasts so they add up correctly using least squares optimization, i.e., find closest reconciled forecasts to the original forecasts.



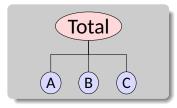
- $y_{Tot,t}$: observed aggregate of all series at time *t*.
 - $y_{X,t}$: observation on series X at time t.



- $y_{Tot,t}$: observed aggregate of all series at time *t*.
 - $y_{X,t}$: observation on series X at time t.

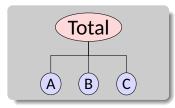
Key concept:

I can construct all time series in my collection if I know the aggregation structure and the bottom-level series.



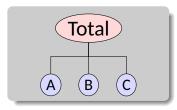
- $y_{Tot,t}$: observed aggregate of all series at time *t*.
 - $y_{X,t}$: observation on series X at time t.

$$\mathbf{y}_{t} = \begin{pmatrix} \mathbf{y}_{\mathsf{Tot},t} \\ \mathbf{y}_{\mathsf{A},t} \\ \mathbf{y}_{\mathsf{B},t} \\ \mathbf{y}_{\mathsf{C},t} \end{pmatrix}$$



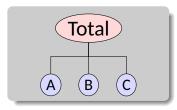
- $y_{Tot,t}$: observed aggregate of all series at time t.
 - $y_{X,t}$: observation on series X at time t.

$$\mathbf{y}_{t} = \begin{pmatrix} \mathbf{y}_{Tot,t} \\ \mathbf{y}_{A,t} \\ \mathbf{y}_{B,t} \\ \mathbf{y}_{C,t} \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mathbf{S}} \begin{pmatrix} \mathbf{y}_{A,t} \\ \mathbf{y}_{B,t} \\ \mathbf{y}_{C,t} \end{pmatrix}$$



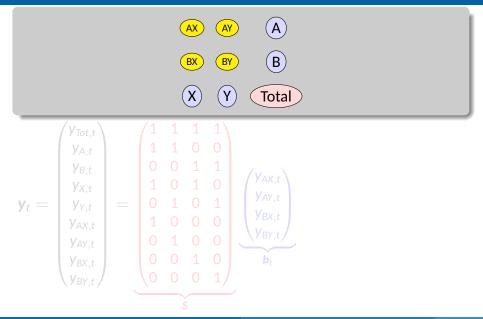
- $y_{Tot,t}$: observed aggregate of all series at time t.
 - $y_{X,t}$: observation on series X at time t.
 - **b**_t: vector of all bottom-level series at time *t*.

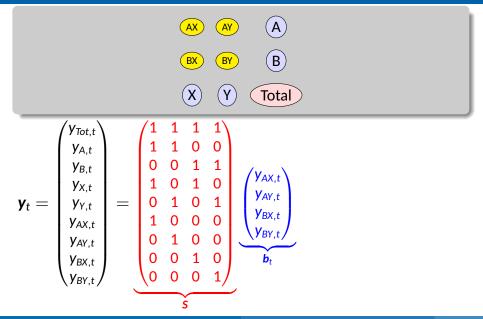
$$\mathbf{y}_{t} = \begin{pmatrix} \mathbf{y}_{Tot,t} \\ \mathbf{y}_{A,t} \\ \mathbf{y}_{B,t} \\ \mathbf{y}_{C,t} \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mathbf{S}} \underbrace{\begin{pmatrix} \mathbf{y}_{A,t} \\ \mathbf{y}_{B,t} \\ \mathbf{y}_{C,t} \end{pmatrix}}_{\mathbf{b}_{t}}$$

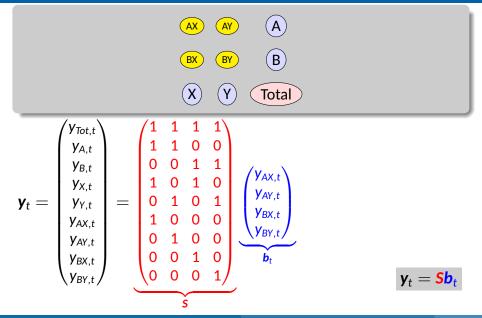


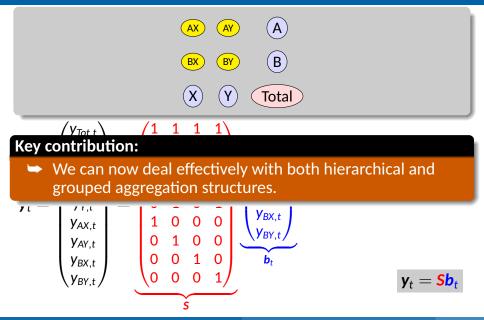
- $y_{Tot,t}$: observed aggregate of all series at time *t*.
 - $y_{X,t}$: observation on series X at time t.
 - **b**_t: vector of all bottom-level series at time *t*.

$$\mathbf{y}_{t} = \begin{pmatrix} \mathbf{y}_{Tot,t} \\ \mathbf{y}_{A,t} \\ \mathbf{y}_{B,t} \\ \mathbf{y}_{C,t} \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mathbf{S}} \underbrace{\begin{pmatrix} \mathbf{y}_{A,t} \\ \mathbf{y}_{B,t} \\ \mathbf{y}_{C,t} \end{pmatrix}}_{\mathbf{b}_{t}}$$









Every collection of time series with linear aggregation constraints can be written as:

$$\mathbf{y}_t = \mathbf{Sb}_t$$

where

- **y**_t is a vector of all series at time t.
- S is a "summing matrix" containing the aggregation constraints.
- **b**_t is a vector of the most disaggregated series at time t.

1 Hierarchical and grouped time series

2 BLUF: Best Linear Unbiased Forecasts

- **3** Forecasting Australian prison population
 - 4 Other forecast reconciliation settings

5 References

Let $\hat{\mathbf{y}}_{T}(h)$ be a vector of base (initial) *h*-step forecasts made at time *T*, stacked in same order as \mathbf{y}_{t} .

(These will almost certainly never add up.)

Reconciled (coherent) forecasts must be of the form:

 $\tilde{\mathbf{y}}_{\mathsf{T}}(\mathbf{h}) = \mathbf{SP}\hat{\mathbf{y}}_{\mathsf{T}}(\mathbf{h})$

for some matrix **P**.

■ P extracts and combines base forecasts ŷ_T(h) to get bottom-level forecasts, Pŷ_T(h) = b̂_T(h). E.g., P = [0|I_m] for bottom-up, P = [p|0_{n-1}] for top-down.

S adds them up, $\tilde{\mathbf{y}}_{T}(h) = S\hat{\mathbf{b}}_{T}(h)$.

Let $\hat{\mathbf{y}}_T(\mathbf{h})$ be a vector of base (initial) \mathbf{h} -step forecasts made at time T, stacked in same order as \mathbf{y}_t . (These will almost certainly never add up.)

Reconciled (coherent) forecasts must be of the form:

 $\tilde{\mathbf{y}}_{\mathsf{T}}(\mathbf{h}) = \mathbf{SP}\hat{\mathbf{y}}_{\mathsf{T}}(\mathbf{h})$

for some matrix **P**.

P extracts and combines base forecasts ŷ_T(h) to get bottom-level forecasts, Pŷ_T(h) = b̂_T(h). E.g., P = [0|I_m] for bottom-up, P = [p|0_{n−1}] for top-down.

S adds them up, $\tilde{\mathbf{y}}_{T}(\mathbf{h}) = \mathbf{S}\tilde{\mathbf{b}}_{T}(\mathbf{h})$.

Let $\hat{\mathbf{y}}_T(h)$ be a vector of base (initial) *h*-step forecasts made at time *T*, stacked in same order as \mathbf{y}_t . (These will almost certainly never add up.)

Reconciled (coherent) forecasts must be of the form:

 $\tilde{\mathbf{y}}_{T}(h) = \mathbf{SP}\hat{\mathbf{y}}_{T}(h)$

for some matrix **P**.

- P extracts and combines base forecasts ŷ_T(h) to get bottom-level forecasts, Pŷ_T(h) = b̂_T(h). E.g., P = [0|I_m] for bottom-up, P = [p|0_{n-1}] for top-down.
- **S** adds them up, $\tilde{\mathbf{y}}_{T}(\mathbf{h}) = S\hat{\mathbf{b}}_{T}(\mathbf{h})$.

Let $\hat{\mathbf{y}}_T(h)$ be a vector of base (initial) *h*-step forecasts made at time *T*, stacked in same order as \mathbf{y}_t . (These will almost certainly never add up.)

Reconciled (coherent) forecasts must be of the form:

 $\tilde{\mathbf{y}}_{\mathrm{T}}(h) = \mathrm{SP}\hat{\mathbf{y}}_{\mathrm{T}}(h)$

for some matrix **P**.

■ P extracts and combines base forecasts ŷ_T(h) to get bottom-level forecasts, Pŷ_T(h) = b̂_T(h). E.g., P = [0|I_m] for bottom-up, P = [p|0_{n-1}] for top-down.

S adds them up, $\tilde{\mathbf{y}}_{T}(\mathbf{h}) = S\hat{\mathbf{b}}_{T}(\mathbf{h})$.

Let $\hat{\mathbf{y}}_T(h)$ be a vector of base (initial) *h*-step forecasts made at time *T*, stacked in same order as \mathbf{y}_t . (These will almost certainly never add up.)

Reconciled (coherent) forecasts must be of the form:

 $\tilde{\mathbf{y}}_{\mathrm{T}}(h) = \mathrm{SP}\hat{\mathbf{y}}_{\mathrm{T}}(h)$

for some matrix **P**.

■ P extracts and combines base forecasts ŷ_T(h) to get bottom-level forecasts, Pŷ_T(h) = b̂_T(h). E.g., P = [0|I_m] for bottom-up, P = [p|0_{n-1}] for top-down.

S adds them up, $\tilde{\mathbf{y}}_{\mathsf{T}}(\mathbf{h}) = S\hat{\mathbf{b}}_{\mathsf{T}}(\mathbf{h})$.

Let $\hat{\mathbf{y}}_T(h)$ be a vector of base (initial) *h*-step forecasts made at time *T*, stacked in same order as \mathbf{y}_t . (These will almost certainly never add up.)

Reconciled (coherent) forecasts must be of the form:

 $\tilde{\mathbf{y}}_{\mathrm{T}}(h) = \mathrm{SP}\hat{\mathbf{y}}_{\mathrm{T}}(h)$

for some matrix **P**.

■ P extracts and combines base forecasts ŷ_T(h) to get bottom-level forecasts, Pŷ_T(h) = b̂_T(h). E.g., P = [0|I_m] for bottom-up, P = [p|0_{n-1}] for top-down.

S adds them up, $\tilde{\mathbf{y}}_T(\mathbf{h}) = S\hat{\mathbf{b}}_T(\mathbf{h})$.

Let $\hat{\mathbf{y}}_T(h)$ be a vector of base (initial) *h*-step forecasts made at time *T*, stacked in same order as \mathbf{y}_t . (These will almost certainly never add up.)

Reconciled (coherent) forecasts must be of the form:

 $\tilde{\mathbf{y}}_{\mathrm{T}}(\mathbf{h}) = \mathbf{SP}\hat{\mathbf{y}}_{\mathrm{T}}(\mathbf{h})$

for some matrix **P**.

- P extracts and combines base forecasts ŷ_T(h) to get bottom-level forecasts, Pŷ_T(h) = b̂_T(h). E.g., P = [0|I_m] for bottom-up, P = [p|0_{n-1}] for top-down.
- **S** adds them up, $\tilde{\mathbf{y}}_T(h) = \mathbf{S}\hat{\mathbf{b}}_T(h)$.

Let $\hat{\mathbf{y}}_T(h)$ be a vector of base (initial) *h*-step forecasts made at time *T*, stacked in same order as \mathbf{y}_t . (These will almost certainly never add up.)

Reconciled (coherent) forecasts must be of the form:

 $\tilde{\mathbf{y}}_{\mathrm{T}}(\mathbf{h}) = \mathbf{SP}\hat{\mathbf{y}}_{\mathrm{T}}(\mathbf{h})$

Key limitation:

► Traditional approaches use information only from a single level.

Can we do better?

bottom-level forecasts, $\mathbf{P}\hat{\mathbf{y}}_{T}(h) = \mathbf{b}_{T}(h)$. E.g., $\mathbf{P} = [\mathbf{0}|\mathbf{I}_{m}]$ for bottom-up, $\mathbf{P} = [\mathbf{p}|\mathbf{0}_{n-1}]$ for top-down.

S adds them up,
$$\tilde{\mathbf{y}}_{T}(\mathbf{h}) = \mathbf{S}\hat{\mathbf{b}}_{T}(\mathbf{h})$$
.

Optimal reconciliation approach

 $\tilde{\mathbf{y}}_{\mathrm{T}}(\mathbf{h}) = \mathbf{SP}\hat{\mathbf{y}}_{\mathrm{T}}(\mathbf{h})$

The error variance of the reconciled forecasts is

 $Var(\mathbf{y}_{T+h} - \tilde{\mathbf{y}}_{T}(\mathbf{h})) = SPW_{h}P'S'$

where $W_h = Var(y_{T+h} - \hat{y}_T(h))$, error variance of base forecasts.

Theorem: BLUF via trace minimisation (MinT) For any **P** satisfying **SPS** = **S**

 $\min_{\mathbf{P}} \operatorname{tr}[\mathbf{SPW}_{h}\mathbf{P}'\mathbf{S}']$

has unique solution at $\mathbf{P} = (\mathbf{S}' \mathbf{W}_h^{-1} \mathbf{S})^{-1} \mathbf{S}' \mathbf{W}_h^{-1}$.

Estimating \mathbf{W}_h is challenging especially for h > 1.

Optimal reconciliation approach

 $\tilde{\mathbf{y}}_{\mathrm{T}}(\mathbf{h}) = \mathbf{SP}\hat{\mathbf{y}}_{\mathrm{T}}(\mathbf{h})$

The error variance of the reconciled forecasts is

$$Var(\mathbf{y}_{T+h} - \tilde{\mathbf{y}}_{T}(h)) = SPW_h P'S'$$

where $\mathbf{W}_h = \text{Var}(\mathbf{y}_{T+h} - \hat{\mathbf{y}}_T(h))$, error variance of base forecasts.

Theorem: BLUF via trace minimisation (MinT) For any P satisfying SPS = Smin tr[$SPW_hP'S'$] has unique solution at $P = (S'W_h^{-1}S)^{-1}S'W_h^{-1}$.

Estimating \mathbf{W}_h is challenging especially for h > 1.

Optimal reconciliation forecasts

$$\tilde{\mathbf{y}}_{\mathsf{T}}(\mathbf{h}) = \mathbf{S}(\mathbf{S}'\mathbf{W}_{\mathsf{h}}^{-1}\mathbf{S})^{-1}\mathbf{S}'\mathbf{W}_{\mathsf{h}}^{-1}\hat{\mathbf{y}}_{\mathsf{T}}(\mathbf{h})$$

Reconciled forecasts

Base forecasts

Optimal reconciliation forecasts

$$\tilde{\mathbf{y}}_{\mathsf{T}}(\mathbf{h}) = \mathbf{S}(\mathbf{S}'\mathbf{W}_{\mathsf{h}}^{-1}\mathbf{S})^{-1}\mathbf{S}'\mathbf{W}_{\mathsf{h}}^{-1}\hat{\mathbf{y}}_{\mathsf{T}}(\mathbf{h})$$

Reconciled forecasts

Base forecasts

WLS Solution

- We assume that W_h = k_hW₁ and approximate W₁ by its diagonal using in-sample one-step ahead forecast errors.
- Easy to estimate, and places weight where we have best forecasts.

Shanika L Wickramasuriya, George Athanasopoulos, and Rob J Hyndman (2019). "Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization". *Journal of the American Statistical Association*, 1–45.

Outline

1 Hierarchical and grouped time series

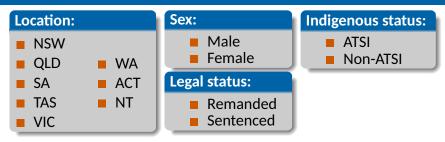
2 BLUF: Best Linear Unbiased Forecasts

3 Forecasting Australian prison population

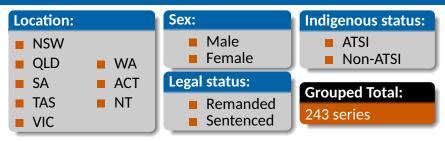
4 Other forecast reconciliation settings

5 References

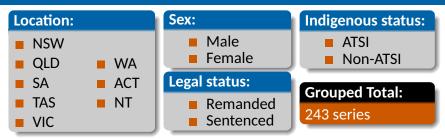
Australian Prison Population



Australian Prison Population



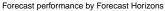
Australian Prison Population

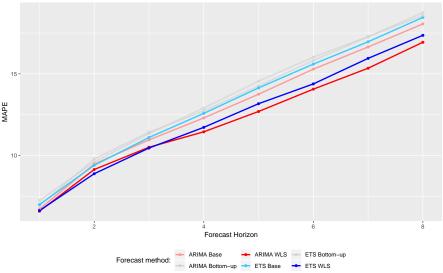


Forecast evaluation setup

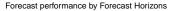
- All adult prisoners in Australia: 2005Q1-2016Q4. (ABS corrective services database).
- 36 obs as training set and generate base forecasts with auto.arima() and ets() for h = 1 to 8-steps ahead.
- Obtain coherent forecasts using optimal reconciliation (WLS), and bottom-up.
- Use a rolling window: 12 1-step, 11 2-steps,...,4 8-steps ahead forecasts for evaluation.

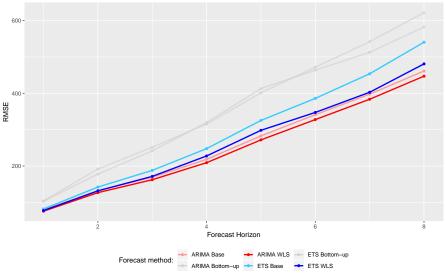
Forecast evaluation - MAPE



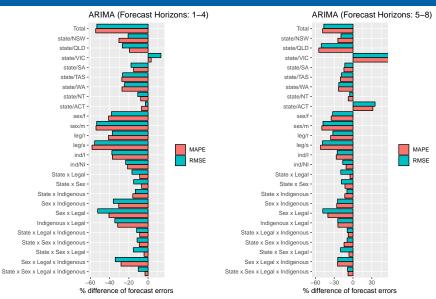


Forecast evaluation - RMSE

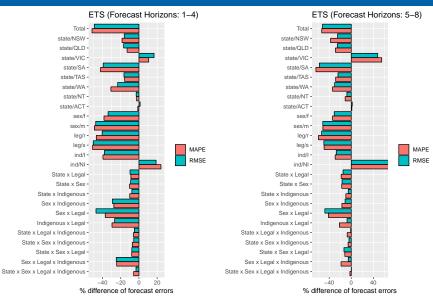




Forecast evaluation - Levels



Forecast evaluation - Levels



Outline

1 Hierarchical and grouped time series

2 BLUF: Best Linear Unbiased Forecasts

3 Forecasting Australian prison population

4 Other forecast reconciliation settings

5 References

Temporal reconciliation

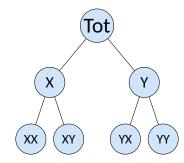
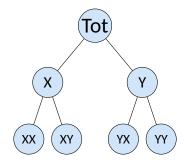


Figure: A simple two-level cross-sectional hierarchy.

Temporal reconciliation



A SA₁ SA₂ Q₁ Q₂ Q₃ Q₄

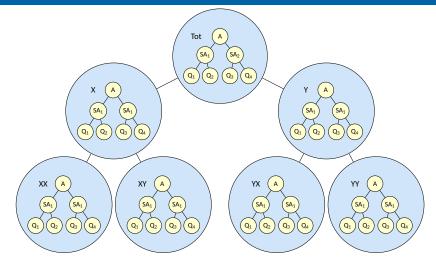
Figure: A simple two-level cross-sectional hierarchy.

Figure: A temporal hierarchy for quarterly data.

George Athanasopoulos, Rob J Hyndman, Nikolaos Kourentzes, and Fotios Petropoulos (2017). "Forecasting with Temporal Hierarchies". *European Journal of Operational Research* **262**, 60–74.

Cross-temporal reconciliation

Cross-temporal reconciliation



Nikolaos Kourentzes and George Athanasopoulos (2019). "Cross-temporal coherent forecasts for Australian tourism". *Annals of Tourism Research* **forthcoming**.

- Reconciliation (especially cross-temporal) offers a single/aligned view of the future to all decision makers, removing any organisational friction from misaligned decisions.
- More crucially, it offers a data driven way to break within and between organisations information silos.

- Reconciliation (especially cross-temporal) offers a single/aligned view of the future to all decision makers, removing any organisational friction from misaligned decisions.
- More crucially, it offers a data driven way to break within and between organisations information silos.

Outline

1 Hierarchical and grouped time series

- **2** BLUF: Best Linear Unbiased Forecasts
- **3** Forecasting Australian prison population
- **4** Other forecast reconciliation settings

5 References

References

Rob J. Hyndman and George Athanasopoulos (2018). Forecasting: principles and practice. 2nd Edn. OTexts. OTexts.org/fpp2/. Chapter 10.

Shanika L Wickramasuriya, George Athanasopoulos, and Rob J Hyndman (2019). "Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization". *Journal of the American Statistical Association*, 1–45.

Nikolaos Kourentzes and George Athanasopoulos (2019). "Cross-temporal coherent forecasts for Australian tourism". *Annals of Tourism Research* **forthcomin**

George Athanasopoulos, Rob J Hyndman, Nikolaos Kourentzes, and Fotios Petropoulos (2017). "Forecasting with Temporal Hierarchies". *European Journal of Operational Research* **262**, 60–74

Rob J Hyndman, Alan J Lee, Earo Wang, and Shanika Wickramasuriya (2016). hts: Hierarchical and Grouped Time Series. R package v5.0 on CRAN.

Rob J Hyndman and Nikolaos Kourentzes (2016). thief: Temporal Hierarchical Forecasting. R package v0.2 on CRAN.

References

Rob J. Hyndman and George Athanasopoulos (2018). Forecasting: principles and practice. 2nd Edn. OTexts. OTexts.org/fpp2/. Chapter 10.

Shanika L Wickramasuriya, George Athanasopoulos, and Rob J Hyndman (2019). "Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization". *Journal of the American Statistical Association*, 1–45.

Nikolaos Kourentzes and George Athanasopoulos (2019). "Cross-temporal coherent forecasts for Australian tourism". *Annals of Tourism Research* **forthcomin**

George Athanasopoulos, Rob J Hyndman, Nikolaos Kourentzes, and Fotios Petropoulos (2017). "Forecasting with Temporal Hierarchies". *European Journal of Operational Research* **262**, 60–74

Rob J Hyndman, Alan J Lee, Earo Wang, and Shanika Wickramasuriya (2016). hts: Hierarchical and Grouped Time Series. R package v5.0 on CRAN.

Rob J Hyndman and Nikolaos Kourentzes (2016). thief: Temporal Hierarchical Forecasting. R package v0.2 on CRAN. Thank you!

Total Emergency Admissions via A&E

